
Cooperative computing in the control plane

Application to NGN services and control

Claude Rigault

Département informatique et réseaux,
ENST, 46 rue Barrault, 75 013 Paris, France
GET-Télécom Paris ; LTCI-UMR 5141 CNRS
claude.rigault@enst.fr

Rony Chahine

Département informatique et réseaux,
ENST, 46 rue Barrault, 75 013 Paris, France,
GET-Télécom Paris ;
CoreBridge, 3 rue Saint Philippe du Roule, 75 008 Paris
rony.chahine@enst.fr,

ABSTRACT: This paper analyses some control requirements for the NGN and proposes original
solutions. The special nature of control plane software is underlined and some of the research
challenges raised by this type of software are pointed out. Special attention is devoted to the
unbundling of the switching architecture and its consequences. The problem of signalling is
then analysed and new solutions are proposed to design services in the NGN.

KEY WORDS: NGN control and service planes. Cooperative computing. Signalling.

1. Introduction: the special nature of network and service control software

In this paper, we analyse network and service control activities and the special
nature of the software that executes these activities. We outline some of the
computer science research problems raised by control software and we indicate new
approaches for these research problems. We finally show how these approaches may
be used in the case of telecommunication services over the NGN [1].

In the part 2 of this paper we explain that services may be designed using a
variety of communication paradigms. Not all communication paradigms require
control activities. We give a formal definition of control, and we characterize which
kind of communication paradigm requires control activities. At this point we
underline the special nature of the software that is required for the execution of
control activities. Throughout this entire part we try to revisit many network
concepts for which the vocabulary is often used in contradictory manners.

In the part 3 of this paper, we show that control activities may be partitioned into
several control domains that may be operated independently. This leads us to a
generalized definition of the unbundling concept, to a general model for the
unbundling of network functions and to a classification of the many signalling
protocols.

In the part 4 of this paper, we explain some important mechanisms required by
control activities, we give a new and formal definition for signalling and we apply
this new definition to propose new signalling protocols.

2. Communication paradigms, control activities and cooperative computing

2.1. Communication paradigms

A service is a coordinated set of functions that a system brings to people or to
software applications. A service instance is a single execution of a service for some
particular actors. For example, when two windows of a same web browser are
opened, two instances of one service are initiated. Communication services may use
one of several communication paradigms (or ways of communicating). We talk of
synchronous communication paradigms when the emitter of a message cannot
proceed further in its communication activities while waiting for the answer. On the
contrary, we talk of asynchronous communication paradigms when the emitter of
a message may carry on its activities while waiting for the answer. The so-called
Message Oriented Middleware (MOM) are examples of communication services
using an asynchronous communication paradigm. At this point in time, five
communication paradigms have been identified. Two of them are synchronous
paradigms: the "request and answer" paradigm and the "conversional" paradigm.
Three communications paradigms are asynchronous: the "Message passing"
paradigm, the "Message queuing" paradigm and the "Publication/Subscription"
paradigm. In the scope of this paper our attention is mainly focused on the
synchronous paradigms: "request and answer" and "conversational".

In the "request and answer" paradigm the communication session lasts only
during the time that is necessary to build up and send the answer to the request.
There is no memorization of the exchange, no persistence of any resource. It is a
connectionless mode of operation according to OSI terminology and it is a stateless

paradigm. In the general case of "request and answer" communication both parties
may originate the request and the other party replies with the answer. However this
general case is rarely used. A particular case of "request and answer"
communication called the "client-server" communication paradigm is mostly used
(see Figure 1). It is a single mono-directional type of "request and answer" where
one party only issues request and the other party only issues answers: A client
always originates the communication session. A server is "always on" and only
sends answers to a client. A server never originates a request to a client. A client
only "pulls" information from a server; a server never "pushes" information in a
client. It should be noted that the Internet is a network that has been optimized for
the client server communication paradigm, although some other types of
communication may take place over it, in a non-optimised manner.

Figure 1. "Client-server" as a particular case of "request and answer"

In the "conversational" paradigm, a communication environment is

explicitly set-up before the users start exchanging media and this environment
remains established even in the absence of user activity. We can say that this
communication environment is "persistent", meaning that it remains set-up as long
as an explicit release is not issued. Therefore, this environment is memorized for the
duration of the communication session. It is a connection-oriented mode of
operation according to OSI terminology and it is a state-full paradigm. The
emblematic example of service requiring a conversational communication paradigm
is the telephone service.

What do we mean by "communication environment"? First it is memory.
Because the communication environment is memorized, a memory page has to be
opened in each partner of the communication session. We call this memory page a
"local context". Each local context memorizes the appropriate session parameters
for the session duration. We call these Session parameters "Session Instance
Data". However, the local contexts of each participating partner put together are to
be considered as a "global context" for the service session. The "Global Context" is
the union of all local contexts that give a global view of the session. When the
communication session is terminated, an explicit release is issued and all the
memory pages are freed, deleting in the same time all the Session Instance Data.

In addition to reserving memory some application require resource reservation
in order to guarantee an upper bound to the transfer delay. We define as a
"connection" the assignment of resources (other than memory) to a particular

 CLIENT

SERVER

session of conversational communication. These resources may be physical
resources like bandwidth in circuit switching or in INTSERV [2]. They may be more
virtual as a route reservation in connection-oriented packet switching or even as a
scheduling priority like in DIFFSERV [3] or also a traffic aggregation label like in
MPLS [4]. According to our definition QoS mechanisms in IP networks are indeed
connection mechanisms. Connection services are also named "Bearer Services".
The most important example of services requiring connection mechanisms is voice
services between human end users.

In the following we will therefore define as a "communication environment"
either memory alone: the global context, or memory and resources. We may remark
at this point that, while the Internet was optimized for the request and answer
communication paradigm, X25 networks were designed according to the
conversational communication paradigm.

2.2. Control activities, local and global context, associations

A service using the conversational communication paradigm should entail
special functions dedicated to setting-up and releasing the communication
environment. We define as "Control functions" the functions executed by all the
partners of a conversational communication instance to set-up, modify, and finally
release the communication environment for this communication instance. Therefore,
in each partner of a conversational communication session there is a control process
activated. The circles on Figure 2 show these control processes. Each control
process, in its turn, opens a local context shown by a rectangle. The control process
uses the local context to store its state and its Session-Instance-Data for the session
duration. When the communication session is terminated, an explicit release is
issued and all the memory pages are freed, deleting in the same time all the Session
Instance Data. This limitation of control activities to the session duration makes a
fundamental difference between control and management activities. Management, in
general, is the adjustment of service parameters. The effects of control finish with
the session while the effects of management persist beyond the sessions. Control
acts on Session Instance Data, while management acts on Service Support Data
(SSD). Every type of service has to be managed regardless of the communication
paradigm they are using. On the other hand only services requiring a conversational
communication paradigm need control functions.

On Figure 2 we represent a conversational communication session between
machine (or human) Alice "A" and machine (or human) Bob "B". We have control
processes running in Alice, at the Originating Local Exchange (OLEX), at the
Transit Exchange (TEX) and at the Terminating Local Exchange (TLEX).

We call “Control plane” the connected set of all processes or entities executing
control functions either in the terminals or within the network. Because machines
are multitasks they usually have many simultaneous sessions of conversational

communication and therefore many local context open simultaneously, belonging to
different communication sessions.

If control processes need to communicate with distant control processes for a
given communication session, they have to give the reference of the distant context.

Figure 2. Control processes, local and global context, associations

We define that Local control processes are associated if they can mutually

address each other among multiple control instances within multitask machines.
These associations are achieved by the cross-referencing of contexts: each
participating control process must maintain a table of the context references of the
other processes with which it communicates. By the association mechanism, each
local context has a pointer to the others as shown on Figure 2. Because the global
view of the communication session, i.e. the complete information about it, is spread
in all the local contexts, the global context is therefore made of a link list of
associated local contexts in the same manner as sectors of a disk are linked together
to form a file. Today there are many protocols that allow such persistent cross-
referencing like the TCP protocol, the dialogs and transactions identifications in
TCAP [5], and the CORBA [6] associations. The disadvantage of these protocols is
that they are specific to some particular networks and do not allow a cross-network
operation.

An association of special interest is the end points association. For example, on
Figure 2 Alice knows her conversation 3 is the conversation 8 of Bob and Bob
knows his conversation 8 is the conversation 3 of Alice. Several research groups
have found convenient to name “Call” this particular association.

According to this definition, the “Call’ is the association (of context references)
between network end-points. More generally, in the case of multi-party calls, a
“call” is an association graph between network end-points. This definition has very
useful consequences and has been adopted by several ITU-T recommendations for

OLEX
Control process

TLEX

B

24

8

A
3

51

165

51
3

165

51 24

165

8
24

Global context

Local context

TEX

8 3
CALL

B-ISDN and for IMT2000. [7]. We will use this definition in the rest of our paper.
While the call is an association between network end points, “a connection is an
assignment of resources to a given call”. It follows that the Call function is an "end
to end" process, while the connection is a link-by-link process.

End-to-end call services include, in addition to the fundamental association
service, presentation functions and bearer negotiation functions. Once the call is
accepted, the agreed bearer service has to be setup by Bearer Control. What
technicians, and many standards like the Intelligent Networks (IN) [8] standards
usually name a "Call Control Function" is indeed a "Bearer Control Function".

As these concepts are now defined we derive that a Public Switched Telephone
Network (PSTN) does not process calls but processes connections. The calls (cross
referencing) are done by the human users. The small conversation: "Hello, I am
Alice, I would like to talk to Bob…Hi Alice, Bob speaking!" is actually a protocol
by which Alice and Bob associate their references. It is a call protocol. Therefore,
the task of the PSTN is not to do calls but to make connections (setup bearer
services) for calls.

If Alice and Bob are machines they have to use a similar call protocol to
associate their local contexts. In a GSM network, when a VLR calls an HLR over
the SCCP network in a connectionless mode, the call protocol used is TCAP. This
protocol exchanges originating and terminating dialog identifications.

Multimedia networks must necessarily include end-to-end call control functions
and protocols because multimedia functionalities have to be negotiated and agreed
before the communication session starts. Examples of call protocols used for
Multimedia networks are the IP telephony "Session Initiation Protocol" SIP [9], the
H323 [10] protocol suite where the call protocol is the H225-Q931 protocol, and
also the "Bearer Independent Call Control" BICC [11] used in B-ISDN.

2.3. The "Cooperative Computing" nature of control activities

So far control activities have required huge amounts of programming effort,
certainly classifying them among the largest programs ever developed. The
programming of the classical call control of present day’s digital telephone
exchanges has required thousands of man-years of programming effort. The origin
of this difficulty may be traced into the special cooperative nature of control
software. To understand this point we should underline that it is possible to classify
computer science into 3 main branches: centralized computing, distributed
computing and cooperative computing.

Centralized Computing was the original state of the art of computer science. A
very powerful mainframe would master all the processes in a company. All
terminals, machines, tools, would be intelligence-less slaves executing orders of the
central Master computer.

Later on, new companies pushed forward a new type of computer science called
Distributed Computing. In distributed computing, many smaller computers, called

minis, work together, specializing on given types of tasks and providing some
amount of department or activity independence. This new computing organization
required communication, and therefore networks, between the computers. The
general solution developed by computer science for distributed computing is the
"Client-Server" architecture, based on the "request and answer" communication
paradigm. However, the client server architecture should be considered more like an
adaptation of the former centralized scheme to the distribution problem than like a
radically new solution. The client is mostly concerned by customization and
interface problems and the essential service data and service logic are located in the
server central position.

A radically new solution to the distribution of intelligence on many smaller
computers would be a new kind of computer science called "Cooperative
computing". In cooperative computing, there is no central position, all the
computers are equal and no one is in a permanent position to give orders to the
others. While many different efforts are taking place towards the development of a
theoretical solution for cooperative computing, (grid computing, peer to peer
processing, agents…), no generally accepted theoretical base has been yet proposed.

Nevertheless some examples of working cooperative processes, successfully
developed, do exist. The main one, for our concern, is the so-called "call control" of
telephone switches. Indeed control functions work in a cooperative manner. In the
telephone network all switches are equal, there is no centralized platform controlling
the setup of a call or its release. Each switch works on a peer-to-peer basis to
achieve a global service. It is because of this special cooperative nature of control
activities, and of the lack of a general theoretical base for this new type of
computing, that "Call control" was developed as an ad hoc solution through a huge
effort and many trial and errors.

So far, the main efforts attempted by the computer science research community
towards the handling of control activities are directed towards some adaptations of
the "Client-server" architectures. This is the case of the, now generally accepted,
Session Initiation Protocol SIP. A remarkable exception to this statement is the
"active network" research and its connections to agent programming. However this
type of solution still remains in a very early stage.

We advocate at this point that the special cooperative nature of control activities
for services requiring a conversational paradigm justifies a serious attention to
fundamental research in cooperative computing.

For this purpose it is possible to identify some key subjects for research in
cooperative computing:

- Cooperative computing requires information sharing. Information

sharing between control and service plane partners is called "signalling". It derives
that Signalling research is not merely a research problem for telephony; it is a
fundamental computer science research problem for cooperative computing.
Signalling is certainly one of the foundations of cooperative computing

- Cooperative computing requires policies for the distribution of decision
authorities. It is not because every participating entity is equal that decisions should
not be taken. For a given problem, at a given moment, who takes the decision for the
whole cooperation? This is a general and very difficult problem (also experienced in
other areas than computer science). This point also shows that the ad hoc solution of
the telephone networks is not a general solution. Telephone networks use a round
robin policy: First Alice takes a decision, then the originating exchange, then the
transit exchange, then the terminating exchange, then Bob. It is clear that this policy,
well adapted to the link-by-link operating mode of the connection process cannot be
generalized to any kind of cooperative computing problem.

- Cooperative computing requires behavioural models for the partners.
How to take a decision if the behaviour of the partners is not known (i.e. they are not
predictable)? Each partner should have a behavioural model of the partners with
whom it has working relations. This is the reason for the so important "Basic Call
State Model" BSCM in intelligent network technology, and for the various call
models in Computer Telephony Integration CTI, as well as the connection modelling
in MEGACO signalling. This consideration is an argument in favour of state-full
proxies in the new VoIP architectures rather than stateless proxies.

- Cooperative computing requires confidence in the partners. This
obvious consideration is not an easier research problem than the preceding ones. In
their monolithic model, the historical telephone operators would identify the "trusted
domain" of their own closed network and the "un-trusted domain" of the third party
service suppliers. The soft-switch architecture and its derivatives like the NGN IMS
architecture are bound to terminate the integrated model of the telephone switch and
to raise the confidence problem of cooperation among external partners.
Authentication is required to ascertain the identity of the partner. Ciphering is
required to avoid eaves dropping or information substitution.

This list of research problems for the establishment of a cooperative computing

theory is certainly not exhaustive, but is already sufficient to understand the huge
research area raised by control activities in the conversational communication
paradigm. The rest of this paper will concentrate on the signalling problem.

3. Partitioning control activities and unbundling network services

3.1. Functional domains for the control of conversational communication
services, horizontal unbundling

In legacy networks, control activities are bundled together in a single platform:
the telephone switch control unit. However, the new soft-switch technologies based
on an asynchronous, packet based, transport plane challenge this monolithic model.
It is not any more necessary to keep all the functions of a telephone switch

integrated in a same platform like in synchronous technologies. It becomes then
legitimate to raise the question of "who does what in switching?" and it appears
clearly that the bearer control function was actually an integrated processing (by a
master) of activities of a different nature that could be advantageously processed by
peer cooperative systems without subordination relations. Several research groups
have attempted to identify the control activities that could be eligible for a separate
processing in different cooperative platforms, eventually belonging to distinct
business partners, and propose unbundled architectures. Therefore, the unbundling
concept is not limited to the access function. Indeed, the unbundling concept may be
extended to many more activities that we are now going to identify.

A first proposal from the TINA research effort [12] consists in separating Access
services, Transport services and Intelligent Network services. Originating Access
services are services required for the login function (Authentication, localization,
Virtual Home Environment (VHE) services, location dependent services…)
Terminating Access services are services required for the contact function (Name
address Translation, Presence services, calling party record presentation…).
Terminating access depends from the Originating access through the localization
function and therefore both functions have to remain bundled as the "Access
services".

Figure 3. Mapping of a mobile telephone network on the various functional domains

Transport services include the Call functions and the Connection (or Bearer)

functions. As already explained, legacy telephone network, designed for human
communication, did not really include call functions as the bearer services could not
be negotiated and were determined by the physical nature of the terminals. On the
contrary multimedia networks must include end-to-end call control functions for the
association of the terminating processes and the negotiation of the bearer facilities.

Bearer control works on a link-by-link basis and therefore the networks have
imbedded bearer control functions. These imbedded bearer control functions are
normally executed as a sequence of (bearer) "functional elements" or "bearer service

Access Transport Intelligence

BTS BSC
MSC

CAP
BCF SSF SCF VLR

MAP
HLR

MAP

PSTN

MS
Camel

features" or "bearer components". There is a default sequence of these bearer
components run by the network switches. In PSTN this default sequence is called
the Plain Old Telephone Service POTS.

Intelligent Network services are services achieved by substituting a different
sequence of bearer components to the default sequence. It derives from this
definition that an intelligent network service is a service that can only be provided
by the network. Intelligent network services are services using network functions or
network databases containing operator information. Services that may be
implemented entirely in a network terminal without resorting to any network
function are not intelligent network services. We derive from this first list of
separable functions that control activities may be classified in three functional
domains: the Access domain providing access services, the Transport domain
providing transport services and the Intelligence domain providing intelligent
network services. Figure 3 shows how a mobile telephone network may be
partitioned into these 3 domains.

Different stakeholders may operate these three functional domains, in an
unbundled manner, provided that they work in a cooperative manner. We define as
horizontal unbundling this first unbundling scheme.

3.2. Vertical unbundling

Standardization bodies use the concept of plane. A plane is a set of
communicating entities linked by a specific network. Standardization bodies also
agree that the NGN will be made of several planes, each of them dedicated to
specific tasks in the provision of a global communication service. A plane being also
a network, the NGN will include several networks, one per plane. Each plane works
out-band from the others and may therefore have its own ciphering algorithms and
keys. The generally agreed NGN model (see Figure 4), that we will name "NGN
plane model", considers three different planes: the Service plane, the Call Control
plane and the Transport plane.

In the Service plane we have the service provision platforms operated by
Service providers. In the Control plane (or session plane), we have the entities in
charge of the end-to-end Call setup protocols and the entities in charge of the link-
by-link setup of bearer services. In the Transport plane we have the transmission
and switching (or routing) capabilities for the users media.

This NGN plane model is to be considered as a cooperative model. The entities
in each plane work in a cooperative manner, either with other entities in the same
plane or with entities in the other planes with which they are supposed to have open
and standardized interfaces.

A very interesting aspect of this model is that each plane may be unbundled, i.e.
operated by different stakeholders. We may therefore have Call Control Service
Operators acting in the Control plane and Connectivity providers acting in the
transport plane. This is made possible by the soft-switch architecture and already
today we find, in many places, Call (or Session) services operators using Media

Gateway Controllers to provide Call services over the media gateways located in the
transport plane. Media gateways may actually be imbedded in new IP telephone sets,
now becoming available at a normal telephone set price, and compatible with the
standard Media Gateway Control protocols MGCP or MEGACO [13]. Some other
Call Control operators like the "Skype" company [14] use proprietary downloadable
interfaces at the expense however of using a PC as a terminal.

This new separation between Control operators and transport operators
consolidates in the NGN the breaking down of the monolithic model of the
telephone switch that is currently taking place.

NGN plane model ETSI Model Simpson model

Client
Provider

Service plane
and service network

Service control

Components
Call Control services Call Control services

Bearer control Bearer control
Control plane

and control network
Media Control Media Control

Transport services
Transport Control

Transport plane
and transport network

Transport flows

Figure 4. Various models for service provision over the NGN

While agreeing with the three planes of the NGN plane model, the ETSI [15] has

further distinguished, within each plane, sub-services of a different nature that do
not justify however a different communication network. The control plane includes
Call Control Activities, Bearer (Connection) Control activities and Media control
activities, dedicated to the communication between the participants various media
coders and decoders. All these control plane sub-functions may however
communicate through the same "control network". In the same way, the ETSI model
distinguishes in the transport plane the transport services and the transport control
functions from the transport user flows, although they all communicate via the
transport network.

Another research group [16] has further refined the service plane sub-functions.
In this model published under the name of "Simpson model" [21], where Simpson
stands for "Signalling Model for Programmable Services over Networks", "Multi-
provider Services" are taken in account. We define as "multi-provider service" a
service built as a graph of independent service components of different nature and
executed by different component providers. As an example we may consider a car
manufacturer Virtual Private Network (VPN) service. In addition to VPN functions
that may be supplied by an intelligent network service operator, financial
components supplied by a banking company and inventory management
components supplied by a specialised provider may be included. Such a service
integrating service components from different suppliers in a single user interface is a

"multi-provider service". In order to take multi-provider services in account the
service plane must include client sub-services, provider (integrator) sub-services and
component sub-services. The Simpson model includes these sub-services in the
NGN service plane as well as the ETSI sub-services of call control, bearer control
and media control for the control plane and therefore the Simpson model is an
unbundling model for the Service and the control planes.

The various Simpson levels constitute another unbundling scheme that we call a
vertical unbundling. It should be noted however that for every horizontal service
function that we have underlined in the horizontal unbundling scheme (Access,
Transport, Intelligence) we have a vertical Simpson column.

Unbundling is therefore a 2-dimension problem as shown on the table of Figure
5. Each place in this table is actually an independent business opportunity. The
condition for this however is that all parties shown on the table agree to work
together in a cooperative manner. Benefits from this cooperation would be twofold:
a) a richer service offer b) a controllable service complexity, each partner having a
limited set of functions to develop.

Acces Transport Intelligence

Access Client Transport client Intelligence Client
Access Services

provider
Transport services

provider
Intelligent network

service provider
Access component

operator
Transport

Components
Intelligent network

components
Access session

services
Call and bearer
control services SSP, IVS

Access transport
network

Transport
network

Figure 5. Horizontal and vertical unbundling dimensions

3.3. Signalling and APIs

The SIMPSON model is a powerful model to identify and characterize
functions, interfaces and mechanisms in the control and service planes. It is also a
powerful modelling technique for many different service architectures. We will use
this model here to identify two different types of interactions between control and
service plane entities with the example of Parlay [17] services over a Soft-switch
architecture [13].

Interacting entities may belong to the same service level and they operate in the
peer-to-peer mode. We call "horizontal signalling" this type of horizontal
communication within a single Simpson level. On the contrary, they may appear in
adjacent service levels. We call "vertical signalling" this type of vertical

communication. Vertical signalling protocols are frequently referenced as APIs
(Application Programming Interfaces). On the figure 6, the SIMPSON model shows
the various vertical and horizontal signalling protocols required in the control and
service planes architectures, identified by generic acronyms. In parenthesis we have
given some examples of legacy protocols at the various levels.

User (Client)

provider

Component

Call Control

Bearer Control

UPI

PCI

CSI

SBI

Client

Provider

Components

Call control
or Session Control

Functions

Connection
Functions

(Parlay API, JTAPI, TAPI)

(INAP, CAP, SIP-V, CSTA)

(MGCP, Megaco)

UUI

PPI

CCI

SSI

BBI

(SIP, BICC)

(ISUP, RSVP)

(Web Services)

Figure 6. Signalling protocols and APIs

As APIs we find that the User to Provider Interface UPI may be implemented
by Web services [18].

At the provider and component levels, the Parlay group proposes a new service
architecture differing from the Intelligent Network IN architecture by a
supplementary level of service customization. At the provider level a service
integrates some component abstractions in a Parlay service platform. Some of these
component abstractions are Call Control components. An example of the Provider to
Component interface PCI is the Parlay API. By this API, a service provider invokes
Call Control components in a Parlay gateway such as an Ericsson Jambala platform
[19] belonging to a Call service operator.

At the Call service (or Session service) level and Bearer service level the soft-
switch architecture implements a separation between call control services
(performed by the Media Gateway Controllers MGCs) and bearer control functions
(performed by the Media Gateways MGs). On one hand, IP connectivity operators
(at the bearer level) provide customers with MGs and take care of the IP forwarding
functions. On the other hand, Call Control operators (at the network level) operating
MGCs outsource the Call Control functions or the IP-Centrex functions formerly
performed by PABXs.

An example of Component to Session Interface CSI API could be the intelligent
network INAP or CAP set of operation [20], by which a Parlay gateway may invoke
the services of a Service Switching Point SSP control unit within a Soft-switch
MGC.

Finally the Call control functions of the MGC request Bearer Services from
Media Gateways MG by means of the Session to Bearer Interface SBI API. The
MGCP or MEGACO protocols are examples of such SBI APIs.

As horizontal signalling protocols or peer to peer protocols we find in the client

level the User to User Interface UUI type of signalling between Clients. SMS should
be considered as medias and therefore do not enter in this category. User to user
signalling, has been frequently mentioned, but has not been implemented so far.

We find in the provider level the Provider to Provider Interface PPI type of
signalling between servers. Here again we cannot say that examples of such
signalling protocols exist at the present time.

We find in the component level the CCI type of signalling between component
providers. An example of CCI signalling is the MAP signalling between different
mobile networks. Another example of CCI signalling is the SCP-to-SCP signalling
of future IN capability sets, or the SCF to SDF signalling of IN-CS1.

We find at the Call service operator level the SSI Session to Session Interface
types of signalling. The Session Initiation Protocol SIP signalling or the Bearer
Independent Call Control BICC signalling are examples of SSI Call signalling
protocols. Peer-to-peer services implement proprietary SSI Call signalling protocols
to associate their users for file transfers.

Finally, in the bearer level, we find the Bearer to Bearer Interface BBI type of
signalling. Examples of BBI signalling abound due to fact that the Plain Old
Telephone Service POTS is indeed a Bearer control service. All Circuit Associated
Signalling CAS protocols are actually BBI types of signalling protocols. The most
important BBI signalling protocol at this point is the ISDN User Part ISUP
signalling protocol widely used between telephone exchanges.

We may remark at this point that the main horizontal signalling protocols,

implemented so far, belong to the lower levels of the SIMPSON level. This comes
from the very centralized way in which services have been designed up to now.
There is now a very sharp contrast between the cooperative computing of nowadays
telephone exchanges and the centralized computing presently used in the service
layers. An important direction for research is certainly to make the service layers
more cooperative, which will require the development of horizontal signalling
protocols in the upper layers of the SIMPSON model.

4. New signalling paradigm: towards a global control plane

4.1. Signalling and open networks

As networks should be fast, networks should be open. This means that a service
initiated by a party in one network could be terminated on a party in another type of
network without excessive complication. This means also that innovative services
may result from the composition of service components located in different
networks. The transfer of Media from one network to the other is rather simple
because media are stateless. The creation of media gateway is therefore a workable
problem. However, the transfer of signalling from one network to the other is a very
complicated problem because of the way signalling is done in present day's
networks. Today, signalling is generally understood as "the invocation of remote
operations or exchange of notifications between local processes of a global
control process" These operations are network specific and the commands for their
invocation are state-full, which means that the effect of a command will depend on
the state of the remote entity, making signalling conversion between different state
machines in signalling gateways, at least a very difficult problem, and probably an
impossible problem in the general case.

This present conception of signalling is clearly a limitation to innovation in the
field of communication services, making cross-network service termination and
cross-network service composition unsolved problems in the general case at the
present time. Up to now, this limitation was not perceived or understood as a serious
problem as network operators did have to cooperate with networks of other
technologies. However this situation has to change now because media and services
are bound to travel or to be extended from one type of network to another, from IP
network to TDM mobile networks for example. It has been advocated that the
problem will be solved by the substitution of the various technologies by a single
one (replacement rather than convergence). This idea is the contrary of the open
network idea and does not seem very realistic in a short to middle term. On the
contrary, it is generally thought that there will not be a single NGN technology for
quite a while. It seems much more fruitful to really face the problem of cooperative
computing between service components of different technologies and different
operators and therefore to tackle the signalling problem. Our thesis is that the
alleged excessive complexity of the control and service plane will be solved by
theoretical improvements in cooperative computing and therefore in signalling
protocol theory. In this objective, we present now some new ideas for the
development of a new unified cross-network signalling protocol.

4.2. Chaining local contexts: The CAT concept

We have explained that the global view of a conversational communication
session, i.e. the complete information about it, is spread in all the local contexts, the
global context is therefore made of a link list of associated local contexts. We have
proposed a new scheme [21] for the binding mechanism: Processes involved in a
same global service session have to associate their local contexts to build a Global
Context for sharing instance data. In the same manner as a File Allocation Table
FAT [22] links together sectors of a same disk to build a file, a Control Allocation
Table CAT links together the various local contexts in different platforms to
build a global context.

When a process needs to share session instance data with a partner process, it
gets the binding reference of its peer context from the CAT. The CAT is a binding
reference graph, distributed on all the associated contexts (see Figure 7). The CAT is
a data structure persisting during the whole session duration. It is created as the
contexts are opened up and is erased at session termination.

 Client

Provider

Component

Network

Bearer

P1 , Cl1

Cl1

P1 P2

P2 , Cl1

Co1, P1

Co1 Co2 Co3 Co4

Co2, P1 Co3, P2 Co4, P2

Figure 7. SIMPSON view of a vertical CAT

On the contrary of RMI references, the CAT pointers are dynamic and persist
only during the service session. They are service instance dependent. In RMI,
references to a remote object within a client are static and predefined by the
programmer before the service execution. They are independent from the service
session execution.

4.3. A new signalling paradigm: The Cooperative Control Signalling Protocol
(CCSP)

Our concept of CAT allows a new definition of signalling. Considering
signalling as the invocation of remote operations or exchange of notifications

between local processes of a global control process makes signalling state machine
dependant and thus complicates the problem of signalling translation. To reduce this
dependency, we propose a more general definition by which "Signalling is the
writing or reading of information by a local control process in remote parts of
the global context". This new signalling paradigm is possible because contexts are
linked by a CAT structure. In this view, we contend that a remote operation may be
invoked by just performing get/set/notify operations on the value of a corresponding
attribute in the remote context. With each attribute a signal field may block its
modification because an other process is already working on this particular attribute.

We define the Cooperative Control Signalling Protocol (CCSP) as a new
signalling protocol based on this new signalling paradigm. The CCSP has basically
four methods: "OPEN context", for the initiation of a new session in a remote
partner, and as in the SNMP paradigm, simple "GET" and "SET" methods to read
or modify a distant object. Unsolicited notifications are sent by the "NOTIFY"
method.

This new concept assumes that a control process understands the syntax and the
semantics of the information in the remote context. Contexts should therefore
include a generic part, common to all services, followed by a service dependant part.
The generic context structure is object oriented. Further work will contribute to the
definition of the generic context and the UML Class diagram for the generic context
class architecture.

Binding

Generic context build-up

Advertisement

Subscription

Get/Set/Notify

Open context

Figure 8. Phases of a generic signalling mechanism (CCSP protocol)

The Figure 8 summarizes the various phases of this new signalling paradigm.
The implementation of the CAT graph is achieved when exchanging the initial
signalling messages (OPEN context) method. The binding phase is followed by an
advertisement phase where the remote context informs the local control process of

the content of its service dependant part. This advertisement phase indicates the
syntax and the semantics of the information classified by known types.

After the advertisement, bound processes may subscribe for get/set/notification
services. This subscription phase must, of course, be conditioned by standard
security procedures. Signalling may then proceed as get/set/notify commands.

For performance and code universality the signalling protocol should be the least
verbose as possible. Using object oriented programming; we can get the entire
context, or a part of it, with one query. For example if we want to get the entire
context we can use a GET method to download the Context object. The object is
serialized and transferred over the network. The method GET Context will return an
instance of the remote Context object. Downloading all the object is an option in
some Object Oriented Middleware like RMI. In general the object is not
downloaded and only remote method invocation is possible.

To modify an attribute value of a context, we first download the context (or a
part of it), then do the modification locally by using setMethodName(…). Once the
modification is done, we send back (upload) the modified object to the remote
process using the SET method (for example SET Context).

In the Web Services paradigm (and most of the Object Oriented Middleware) the
object that a client is querying remains remote and is not downloaded to the client
machine. The client has to remotely invoke its methods. On the contrary, in the new
signalling paradigm implemented by CCSP we may download the full object (GET
Context) and then read or modify its attributes. In case a modification has been done
to the downloaded object we update it on the remote process by using a SET method
(SET Context), with the result of the remote operation execution.

5. Conclusion and further work

In this work, we have given formal definitions for the control and service plane
activities and we have underlined the cooperative nature of the control and service
plane software. We have applied these concepts to the NGN architecture and to its
Service, Control and Transport planes. We have identified the unbundling models
for the Service and control planes and the cooperative software constraints deriving
from these unbundled architectures. We have pointed out some of the problems
requiring fundamental research for the progress of this field and we have focused on
the signalling problem. We have shown that a new approach to signalling was
necessary, and therefore we have proposed a new signalling paradigm and given the
basic implementation principles for this new paradigm: the CCSP protocol.

Our further work is now to detail the generic context structure for all signalling
domains: Access, Intelligence, Call and Bearer signalling domains. It is also to show
its applicability to all the APIs and signalling paths identified by the SIMPSON
model. The benefits expected from this approach should be to make cross-network
services feasible, to allow a richer service offer, and to achieve a controllable service
complexity, each partner having a limited set of functions to develop.

6. Bibliography/References

[1] "Principe général d'architecture d'un réseau NGN", Etude technique, économique et
réglemntaire de l'évolution vers les réseaux de nouvelle génération, Etude réalisée par le
cabinet Arcome pour le compte ART, Septembre 2003, http://www.art-telecom.fr/
[2] INTSERV: IETF RFC 1633; IETF RFC 2212 ; IETF RFC 2215
[3] DIFFSERV: IETF RFC 2474; IETF RFC 2475
[4] IETF RFC 3031: "Multi-protocol Label Switching Architecture", January 2001
[5] ITU-T Q.771_Q775 : TCAP : Transaction Capability
[6] CORBA : www.corba.org
[7] ITU-T recommendation Q 1701 Signalling requirements for IMT-2000 networks
[8] Global Functional Plane for Intelligent Network CS1. ITU-T Recommendation Q1213
[9] IETF RFC 3261: “Session Initiation Protocol (SIP)“, June 2002
[10] ITU-T Recommendation H. 323
[11] ITU-T Recommendation Q1901: BICC: Bearer Independent Call Control
[12] TINA-C Consortium
(Telecommunication Information Networking Architecture) www.tinac.com/
[13] Soft-switch architecture : IETF RFC 2705: Media Gateway Control Protocol (MGCP)
Version 1.0 Oct. 1999, IETF RFC 3015: Megaco Protocol Version 1.0, Nov. 2000
[14] Skype : http://www.skype.com
[15] TISPAN: http://www.item.ntnu.no/fag/ttm4130/NGN_Workshop_Protocol.ppt
[16] Astronefs: “Network and Telecommunication Global Service Convergence: White
paper”, http://www.infres.enst.fr/~rigault/white-paper.pdf
[17] Parlay : http://www.parlay.org/specs/index.asp
[18] W3C : “Web Services Description Language (WSDL) 1.1”, 15 march 2001
http://www.w3.org/TR/wsdl
[19] Ericsson’s Service Capability Server Parlay Gateway
http://www.ericsson.com/mobilityworld/sub/open/technologies/parlay/about/parlay_about_gs
1
[20] CAMEL: ETSI recommendation TS 101 046 (V7.0.0)
[21] Softcom 2004 Claude Rigault, Rony Chahine:: "New signaling mechanisms for multi-
provider and cross-network services"
[22] Silberschatz and Galvin: "Operating System Concepts", 2004:
http://www.cs.biu.ac.il/~wiseman/os/os/os12.pdf

